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Abstract: 
Businesses and Government are investing heavily in their data assets. As data 
quantities continue to grow rapidly, it is increasingly difficult to extract maximum 
value from those data stores. Learning to predict the future from past observations is 
one of the key components that make it possible to bring value to data.  
To date, much of the research effort has been devoted to drawing predictions about a 
single pre-defined target variable, such as predicting the magnitude of the global 
warming, or the probability of developing cancer. However, in many real-world 
applications, what we wish to predict can change dramatically from one instance to 
the next, e.g. from one tactical situation to another or from one client to another. 
State-of-the-art techniques only provide ad-hoc solutions to this problem, because 
learning one model for every possibly encountered situation does not scale to big 
data assets.  
This project investigated methods for learning a single model that can effectively and 
efficiently predict all unobserved variables from the currently available evidence. We 
developed new technologies to learn models with this property from large and 
high-dimensional data. Our results show that our techniques offer a gain of 4 orders 
of magnitude in computation time over the state of the art.  

1. Introduction:
Data analytics increasingly underpin many core processes in industry, commerce, 
governance and science. Data is only a key strategic asset because knowledge 
discovery methods make it valuable. As data quantity inexorably rises, more 
effective analytic techniques that can extract greater information from big data will 
add tremendous value. To date, 
much big data research has been 
devoted to drawing predictions 
about a single target variable: the 
magnitude of global warming, 
for example, or the probability 
of developing cancer. 
Classification is the task that aims 
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at predicting the value taken by a categorical variable from observations over a 
pre-defined set of variables.  In this very mature field of research, many algorithms 
have been proposed to learn how to draw accurate predictions from data [1] – see 
Figure 1 for an example.  
However, classification is limited to predicting a predefined and unique variable. 
This project sought to develop methods that learn how to effectively and efficiently 
predict any set of variables from any other set of variables. This is necessary because, 
in many real-world applications, what we know and what we wish to predict can 
change dramatically from one instance to the next, e.g. from one tactical situation to 
another or from one client to another. Traditional classification models can be of 
limited value to data practitioners because they fail to provide flexibility to predict 
whatever happens to be unobserved in any given context. Consider a bank adviser 
meeting a new client for the first time. From one new client to another, the bank 
adviser might be interested in predicting very different variables; from the likely 
income of the new client’s household, to the likelihood of him or her to be interested 
in a specific insurance policy. Moreover, the information (variables) that the adviser 
might be able to collect from one new client to the next might be very different, 
depending on the course of the conversation. This process is exemplified in Figure 2 
below, where the information collected by the adviser are depicted in blue, while the 
predicted values are depicted in green.  

 
Figure 2: Example illustrating the need for more flexible learners - in blue: the 

information the adviser has acquired about his or her new client over the course 

of the conversation; in green the information predicted by an ideal system.  

The same needs arise in many domains and situations. In systems supporting medical 
diagnosis, general practitioners might be interested in predicting different sets of 
variables for different patients while having different information about their medical 
condition and history. In asset management, financial advisers might wish to study 
the likelihood of different stocks gaining value after having learned about any of 
many different types of information about the rest of the market).  
We call this task ‘Omnidirectional learning’: being able to learn from data described 
by a fixed set of variables 𝑍, and being able to predict any subset of variables 𝑌 ⊂ 𝑍, 
from any subset of the remaining ones 𝑋 ⊆ 𝑍\𝑌.  
 

Progress and limitations to date in this field of research.  

‘Omnidirectional learning’ is not a standard term in the literature, and actually 
corresponds to a task that has only previously received limited attention and failed to 
be recognized as a distinct task requiring specialized methods. We now review the 
state of the research literature in the techniques that are related to this task, and 
explain how no existing algorithm can consistently fulfill the function of 
omnidirectional learner.  
Over the last decades, there has been significant research interest in learning 
classification models from data. Classification learners aim at estimating the 
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probability of a target variable 𝑦 (the class), given the values taken by a set 𝑋 of 𝑀 
variables 𝑥̅ = {𝑥1, ⋯ , 𝑥𝑀}; i.e. constructing a model of 𝑝(𝑦|𝑥̅). Since the 1950s, a large 
variety of classification algorithms and strategies have been studied, with different 
properties, behaviors and cases they are particularly suitable: from Naïve Bayes, 
logistic regression [5] and decision trees, to SVMs [14] and Random Forest [15]. The 
reader can refer to [1] for a recent review of the main classification algorithms. A 
naïve way to address our omnidirectional task would thus be to utilize state-of-the-art 
classification algorithms, and compose a solution that learns to predict every possible 
variable from every possible subset of the remaining ones. 
There is a first functional objection to the use of independent classifiers for 
omnidirectional learning: predicting every target variable of 𝑌  independently 
completely ignores the complex dependencies that might exist between them. For 
example, number of children and number of bedrooms are interdependent, and so 
predicting them separately will inevitably lead to important inaccuracies.  
The second objection is functional: using independent classifiers for omnidirectional 
learning is impossible for most datasets, because this requires learning a different 
model for every possible target variable, i.e. 2𝑀 models.1 The only way to avoid 
having to build an exponential number of models would be to use models that can 
handle missing values. That would make it possible to build a single model per target 
variable and treat the other unobserved variables during classification as unknown. 
Three main strategies have been identified to deal with missing values at prediction 
time [2]: 

1. Discard instances: discarding instances with missing values. This goes against the 
aim of omnidirectional learning, because all instances will have unobserved 
variables and hence be discarded.  

2. Imputation: estimating the value or distribution of the unobserved variables, which 
would produce a typical chicken-and-egg problem for omnidirectional learning, 
because if variables 𝑋1 and 𝑋2 are unobserved, we would need to estimate 𝑋2 to 
predict 𝑋1 and vice versa.  

3. Reduced-feature Models: using a different model, constructed to contain only the 
observed variables of test instance. There would then be three possible strategies:  

a. Learn all the possible models in advance, which we have shown above to 
be unfeasible for datasets with more than a dozen variables.  

b. Learn the whole model at classification time – a strategy known as “lazy 
classification” [3] – for which the time required to perform the 
classification would be incompatible with most applications.  

c. Marginalize over the unobserved variables of the learned model, which is 
only feasible for either simple models like Naïve Bayes – which will often 
not provide competitive predictions – or if only a few variables are 
unobserved.2 That is contrary to the specifications of our omnidirectional 
framework.  

                                            
1 With the target variable fixed, each remaining variable has to be either evidence/observed, or 
missing, which leads to 2𝑀 possible models.  
2 In the general case, marginalizing is exponential with the number of variables over which the 
marginalization is performed. 
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Thus, composing an omnidirectional learner from existing classifiers would be both 
unsound and unfeasible.  
 Graphical models [4] constitute a more consistent way to target 
omnidirectional learning, because: 

1. They are models of the joint probability with no particular class, and can thus 
model complex dependencies between the variables.   

2. They have efficient inference algorithms that make it possible to marginalize 
the joint probability over any set of variables. This would make it possible to 
compute the probability (or belief) over our set 𝑌 of unobserved variables, 
conditioned on some evidence over the remaining set of variables (X).  

However, using graphical models for omnidirectional learning faces three main 
scientific obstacles:  

Obstacle #1: How to efficiently marginalization over any set of variables? 

Echoing our discussion about the treatment of missing values for classification, 
making predictions from models of the joint probability requires marginalization. 
When a single variable 𝑍1 is the target of the prediction and all values of the other 
variables are known, the conditional probability is obtained by marginalization over 
the target: 

𝑝̂(𝑧1|𝑧2, ⋯ , 𝑧𝑀) =
𝑝̂(𝑧1, 𝑧2, ⋯ , 𝑧𝑀)

∑ 𝑝̂(𝑣, 𝑧2, ⋯ , 𝑧𝑀)𝑣∈𝐷𝑜𝑚(𝑍1)
 

However, in the general case, such marginalization is only possible for one target 
variable; while omnidirectional learning requires being able to get a prediction about 
several (and potentially hundreds) of variables. As we have described above, this 
process is called inference or belief propagation for graphical models. It works by 
iteratively updating local probabilities depending on local neighborhoods of the 
graph, until convergence of the marginal probabilities. However, for general 
graphical models, only approximate algorithms exist (e.g. loopy belief propagation), 
for which convergence to actual marginals is uncertain [6].  
 Obstacle #2: How to learn from large and high-dimensional datasets? 
Learning graphical models from data has been of major interest since the 1990s with 
various methods proposed for log-linear models [5], Bayesian networks [7,8] and 
Markov Random Fields [9,10]. However, to the best of our knowledge, other than 
our own work in the area [12,13], no state-of-the-art method can efficiently learn 
from datasets with more than about 50 variables 3  without making strong 
assumptions about the distribution from which the data is drawn. This is, for example, 
the case for methods using l1-regularizers [9,25] which assume that every variable 
will interact with a very low number of variables, and for the PC/IC algorithms [26] 
which assume that the conditional independencies can be discovered with reduced 
subsets of variables. These assumptions lower the accuracy and reliability of the 
results. 

In this project, we have focused on effectively and effectively learn junction 

tree models. Junction trees are a perfect class of graphical models for 
omnidirectional learning because they allow for efficient and exact marginalization 
over any set of variables, which directly solves Obstacle #1. This project focused on 

                                            
3 See for example the running times in hours for most state-of-the-art methods on datasets with no 
more than 50 variables in [10].  
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the learning of the structure of junction tree models for data assets with 1,000+ 
variables.   
 

2. Our approach: Prioritized Chordalysis   
In a series of papers published in 2013 and 2014 [12,13], we had shown how to 
effectively learn junction tree models (also known as decomposable models) from 
data with medium dimensionality of up to 100 variables. However, further scalability 
remained limited, because state-of-the-art techniques have to examine every edge at 
every step of the search. For example, learning a junction-tree with the 
state-of-the-art for high-dimensional data requires more than 3 days for a dataset 
with 700 variables (see our experiments on the Protein dataset below). 
 
The technology and algorithms developed in this project are based on the idea that, at 
every step of a forward search for the best graphical model, it is only necessary to 
reconsider a subset of edges for addition to the successively refined models. Let us 
motivate this idea with 
another real-world dataset 
representing 30,000 news 
articles described over 500 
variables (see the description 
of dataset ‘ABC News’ in the 
experiments below for more 
details). On the one hand, we 
recorded how many edges are 
examined by the LLA process. 
We report this number over 
the course of the LLA process 
in the top curve in figure on 
the right: the process examines the addition of more than 10,000,000 edges. On the 
other hand, we looked at how many edges actually lead to the same evaluation of the 
model between successive steps of the search. We report the difference - i.e. the 
number of times that edges need to be re-examined after the very first step - in the 
bottom curve of the figure above: only about 10,000 edges' additions require 
re-examination. Note that the remainder of this report will make it clear how this 
graph can be generated.  
This means that the vast majority of the computation could be avoided if we knew 

which edges would lead to the same evaluation of the model.  
 
This observation is, quite simply, what the technologies that we developed aim at 
leveraging on: showing how to exactly predict that an edge will need to be 
re-examined, and designing an algorithm that utilizes that knowledge to learn 
junction-tree models several orders of magnitude faster than the current 
state-of-the-art methods.  
Our experiments on real-world datasets with up to 2,000 variables show that our 
algorithm, Prioritized Chordalysis, can search for a junction-tree model about 4 
orders of magnitude faster than state-of-the-art techniques, without making any 
additional assumption. 
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Let us motivate over a few simple examples why only a very limited number of 
edges need to be re-examined at each 
step of the search. 

 Case 1: disconnected 
components. Consider the 
model of a joint distribution 
over four variables (age - a, 
height - h, gender - g and 
cholesterol - c) illustrated 
figure (a) on the right. 
Starting with a model 
considering that the 4 
variables are independent, the 
first step consists of finding 
which one of the 6 edges will 
result in the best model. To this end, the addition of every single edge is 
evaluated. Let us assume that this model is the one including edge {a,h}, i.e. 
including the correlation between age and height. The second step is then 
going to assess the addition of every single edge again. The score4 associated 
with the addition of edge {g,c}remains identical, regardless of it being added 
at the first or second step, because associated variables are not in the same 
connected components of the graph, and hence not “interacting” in the model; 
cholesterol and gender are independent of age and height. As a result, this 
edge need not be evaluated again at the second step. 

 Case 2: empty minimal separator. Consider now figure (b) that results from 
including the interaction {h,g} at step 2. The third step is then going to 
examine the addition of every remaining edge again. The score associated 
with the addition of edge {g,c} is identical, regardless of it being added at the 
first, second or third step, because adding {g,c} will “explain” the same 
quantity of information in all three models; cholesterol is independent of age 
and height given gender. We will see that this is due to an empty minimal 
separator between g and c: 𝑆{𝑔𝑐} = ∅, i.e. there is no vertex to remove from 
the graph to disconnect g from c. As a result, this edge need not be evaluated 
again at the second and third step. 

 Case 3: identical minimal separator. Consider the more elaborate model over 
9 variables illustrated in figure (c) above, where the numbers on the edges 
indicate the steps at which they were added. We show that from step 3, the 
addition of edge {f,g} to any successively refined model need not be 
evaluated again and that the score of adding {f,g} will remain invariant. This 
is motivated by the fact that, from step 3 on-wards, removing the vertex e 
disconnects f from g (𝑆{𝑓𝑔} = {𝑒}). In consequence, the last time that the 
addition of this edge needs to be evaluated is at step 3. 

We will now prove the validity of these intuitions. It is interesting to observe that 
being able to tell if an edge has to be re-evaluated is not sufficient, because the 

                                            
4 Note that our observations are valid for different scores such as p-value computed from 
log-likelihood ratios, Kulbach Leibler divergence and MDL/MML scores. In the remainder of this 
report, we focus on p-value.  
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search process will still enumerate over all the edges at every step. This enumeration 
prevents us from scaling to datasets with thousands of variables, because there are 
𝑂(𝑀2)  M variables. We will show that Prioritized Chordalysis can precisely 
identify the edges that have to be re-evaluated, and use this information to maintain a 
data structure that makes it possible avoid such enumeration. 
 
2.1 What edges require re-examination?  

We have shown in [12] that computing the statistical significance (p-value) of 
replacing a current reference model 𝑀⋆ by a candidate model 𝑀𝑐 requires two 
elements: the difference in the fit 𝐺𝑟

2 and the difference in the complexity 𝑑𝑓𝑟. We 
now develop these elements for our target class of models, i.e. junction tree models.  
DEFINITION 1: Let 𝐺 = {𝑉, 𝐸} be an undirected graph and two vertices 𝑎, 𝑏 ∈ 𝑉. 
The set of vertices 𝑆 ⊂ 𝑉 is a (a,b)-separator if removing S from 𝐺 separates the 
vertices a and b into different connected components. If no proper subset of 𝑆 is an 
(a,b)-separator, then 𝑆 is a minimal (a-b)-separator, noted 𝑆𝑎𝑏. 
Moreover, we have recently shown that:  
THEOREM 1 [12]: If two decomposable models 𝑀𝑐 ⊂ 𝑀⋆ differ only in one edge 
(a,b), then: 

where H(.) denotes the entropy.  
We can thus formulate the following theorem: 
THEOREM 2: Let 𝑀1

⋆ and 𝑀2
⋆ be two reference models selected at different steps of 

the search, 𝐺1
⋆ = {𝑉, 𝐸1

⋆} and 𝐺2
⋆ = {𝑉, 𝐸2

⋆} their associated graphs, and 𝑎, 𝑏 two 
verticies such that there is no edge between a and b in either models and 𝐺1

⋆ ∪ {𝑎, 𝑏} 
and 𝐺2

⋆ ∪ {𝑎, 𝑏} are both chordal graphs (i.e. adding {a,b} to either graphs keeps the 
models in the class of junction-tree models). If S is a minimal (a,b)-separator in 𝐺1

⋆ 
and 𝐺2

⋆ (𝑆𝑎𝑏
⋆1 = 𝑆𝑎𝑏

⋆2), then the p-value associated with the addition of {a,b} to 𝑀1
⋆ is 

identical to the p-value associated with the addition of {a,b} to 𝑀2
⋆. 

Proof. Direct from simplification of 𝐺𝑟
2 with 𝑆𝑎𝑏

⋆1 = 𝑆𝑎𝑏
⋆2. ∎ 

 
A direct consequence of this theorem is that the p-value associated with the addition 
of an edge only has to be re-evaluated between two steps of LLA if its minimal 
separator changes between these steps. The possible gain in computation then 
depends upon how frequently do minimal separators actually change between 
successive steps of the search. This obviously depends on the underlying structure of 
the dataset; we can however bound the maximum number of edges that will change 
between two steps of the search.  
THEOREM 3: The number of edges that need to be re-examined after adding edge (a,b) 
to the current reference model is at most 2(𝑀 − 1) − |𝑁(𝑎)| − |𝑁(𝑏)|, where 𝑁(𝑥) 
designates the neighbours of 𝑥, i.e. only 𝑂(𝑀) edges require re-examination at 
every step.  
Proof. Adding (a,b) to a chordal graph results in the addition of only one maximal 
clique: 𝐶𝑎𝑏 = 𝑆𝑎𝑏 ∪ 𝑎 ∪ 𝑏  [32, Section 3.2.1]. Any new edge added to the 
clique-graph of the graph will have 𝐶𝑎𝑏 as one of its endpoints [32, Theorem 4.3] 
(note that we use the term “clique-graph” as defined in [31]). It results that any edge 
impacted by the addition of (a,b) has either the form (a,x) or (b,x) [32, Proof to 
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Theorem 4.3]. Given that a can at most be connected to 𝑀 − 1 vertices and that it is 
already connected to |𝑁(𝑎)| of them, there are at most 𝑀 − 1 − |𝑁(𝑎)| edges of 
the form (a,x). Similar reasoning for b. ∎ 

This fundamental result establishes that, in the worst-case scenario, only 𝑂(𝑀) 
edges have to be re-examined at each step. This strongly contrasts with the 
state-of-the-art techniques that require examination of all 𝑂(𝑀2) possible edges.  
 
2.2 How to select all edges that need to be re-examined?  

We have shown in the last subsection that an edge needs to be re-examined between 
two steps of the search if and only if the associated minimal separator has changed 
between these two steps. The naive way to select all the edges that need to be 
re-examined at every new step would then be to iterate over all edges (𝑎, 𝑏) and 
select those for which the minimal separator has changed. However, we have seen 
that iterating over all possible edges at every step of the search is precisely the 
limiting factor to scale up to datasets with thousands of variables. Furthermore, even 
this naive selection would require prohibitive calculations, because finding all 𝑆𝑎𝑏 
itself requires 𝑂(|𝑉| + |𝐸|) operations for chordal graphs [33]. In this subsection, 
we show how both these problems can be solved using an advanced graph-theoretical 
data structure - the clique-graph [31]:  

1. We demonstrate that, for all edges (a,b)$ that are considered for addition to 
successive reference models 𝑀⋆ , their minimal (a,b)-separators can be 
efficiently derived from the clique-graph. 

2. We take an existing algorithm that aims at maintaining the clique-graph data 
structure when iteratively adding edges to the supporting graph [32], and 
show how to modify it to keep track of all  minimal (a,b)-separators. 

 
2.2.1. Minimal vertex separators align with edges of the clique-graph 

The clique-graph structure is an ideal base-structure for our task of keeping track of 
all minimal separators between the vertices.  
DEFINITION 2 [31, Definition 2]: Let 𝐺  be a chordal graph. The clique-graph 
𝐶(𝐺) = {𝑉𝑐, 𝐸𝑐} is defined by: 

 𝑉𝑐 is the set of maximal cliques of 𝐺 
 (𝐶1, 𝐶2) belongs to 𝐸𝑐  iff 𝐶1 ∩ 𝐶2 is a minimal (a,b)-separator for each 

𝑎 ∈ 𝐶1\𝐶2 and each 𝑏 ∈ 𝐶2\𝐶1 
We now formulate the theorem that is the base for tracking the minimal separators.  
THEOREM 4: If (a,b) can be added to a chordal graph 𝐺 while maintaining its 
chordality, then 𝑆𝑎𝑏 = 𝐶𝑎 ∩ 𝐶𝑏 where (𝐶𝑎, 𝐶𝑏) ∈ 𝐸𝑐 , 𝑎 ∈ 𝐶𝑎 and 𝑏 ∈ 𝐶𝑏.  
Proof. If adding (a,b) maintains the chordality of 𝐺 then ∃(𝐶𝑎, 𝐶𝑏) in 𝐶(𝐺) such 
as 𝑎 ∈ 𝐶𝑎 and 𝑏 ∈ 𝐶𝑏 [32, Lemma 3.1]. By Definition 2, if (𝐶𝑎, 𝐶𝑏) ∈ 𝐸𝑐, then 
𝐶𝑎 ∩ 𝐶𝑏 is a minimal (a,b)-separator. ∎  
 

2.2.2. Minimal vertex separators align with edges of the clique-graph 

We have demonstrated in Theorem 4 that for all edges (a,b), the minimal 
(a,b)-separator 𝑆𝑎𝑏 can be obtained from edges (𝐶𝑎, 𝐶𝑏) of the clique-graph, such 
as 𝑎 ∈ 𝐶𝑎 and 𝑏 ∈ 𝐶𝑏. A naive way of keeping track of all the minimal separators 
could thus be to iterate over the edges 𝐶1, 𝐶2) of the clique-graph, and for each one 
of them, to iterate over all pairs of vertices (𝑥, 𝑦), 𝑥 ∈ 𝐶1\𝐶1 ∩ 𝐶2, 𝑦 ∈ 𝐶2\𝐶2 ∩ 𝐶1 
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and memorize that 𝑆𝑥𝑦 = 𝐶1 ∩ 𝐶2. This would however lead to a vast amount of 
unnecessary computations, because most of the structure of the clique-graph remains 
unchanged when adding an edge to the associated (normal) graph.  
 
We refine here the state-of-the-art algorithm for the iterative update of clique-graphs 
[32] in order to keep track of all minimal vertex separators. Note that we only detail 
the modified parts of [32]’s algorithm.5 The theoretical contribution of this part of 
the paper concerns 𝜀𝑀

𝑓  - a boolean MxM-matrix informing about the eligibility of 
any edge for addition to the current graph - and its iterative update: 

1. We make 𝜀𝑀
𝑓  a function that associates to any pair of vertices (a,b) its 

eligibility, its minimal separator 𝑆𝑎𝑏 and the clique-graph edge (𝐶𝑎, 𝐶𝑏) ∈
𝐸𝑐 such that 𝑎 ∈ 𝐶𝑎, 𝑏 ∈ 𝐶𝑏 and 𝐶𝑎 ∩ 𝐶𝑏 = 𝑆𝑎𝑏, i.e. the two nodes of the 
clique-graph allowing a to be connected to b in 𝐺. 

2. Following our Theorem 4, every time a new edge (𝐶′, 𝐶𝑎𝑏) is added to the 
clique-graph as a result of adding (a,b) to the graph, we set 𝜀𝑀

𝑓 (𝑥, 𝑎) to 
(true, C′ ∩ Cab, C′, Cab)  for all (x,a) such as x ∈  C′\Cab , 𝑎 ∈ 𝐶𝑎𝑏\𝐶′ . 
Similarly for b. 

3. Every time an edge (𝐶1,𝐶2) is deleted from 𝐶(𝐺) as a result of adding (a,b) 
to 𝐺  and noting that such (𝐶1,𝐶2) will follow 𝐶1 ∩ 𝐶2 = 𝑆𝑎𝑏 , we set 
𝜀𝑀

𝑓 (𝑥, 𝑎) to (false, _, _, _) for all pairs (x,y) such that x (resp. y) is in the 
same connected component as a (resp. b) in 𝐺 − 𝑆𝑎𝑏. 

In addition, note that the scientific community has challenged the correctness of 
[32]’s algorithm, in particular for the case where G is made of several connected 
components [34] which leads to empty minimal separators. We attribute this to a few 
unfortunate typos present in [32], to the use of an imprecise vocabulary,6 and to the 
absence of any available implementation of the algorithm. We have clarified, 
corrected and extended [32]'s algorithm. Our algorithm can easily been reversed back 
to the original algorithm by only considering the boolean values in 𝜀𝑀

𝑓
(𝑥, 𝑎). Note 

that the validity of our implementation has been carefully checked and tested over 
hundreds of experiments, where we verified that it led to the same results as 
algorithms which do not make use of the clique-graph [35]. 
 

2.3 Efficiently iterating over the best edges 
This subsection describes the last component of our algorithm: how to prevent 
enumeration over all possible edges at every step.  
At every step, the standard model-search frameworks consider all the possible 
modifications of the current reference model. This requires iteration over all 𝑂(𝑀2) 
possible edges, which is the limiting factor to perform the search for datasets with 
thousands of variables. As there are at most (𝑀

2
) steps, state-of-the-art algorithms 

can all lead to the examination of 𝑂(𝑀4) edges. 

                                            
5 The reader can refer to the original paper and to our implementation available at 
http://github.com/fpetitjean/chordalysis for more details 
6 An example is the use of ``connected'' which can be interpreted as the presence of a 
direct edge between two vertices, or as the existence of a path connecting these 
vertices. 
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Our Prioritized-Chordalysis approach uses a priority queue to store the edges that 
have to be successively considered for addition to the current reference model. We 
keep the edges ordered by their associated statistical significance. As we have seen in 
Section 2.1, if the minimal separator associated with an edge does not change from 
one step to another, neither does the statistical significance associated with this edge. 
This means that, at every step, the only edges that are going to change in the queue, 
are 1) the edges that are not eligible anymore because they would not keep the graph 
chordal, 2) the edges that are newly eligible and 3) the edges that have had a change 
of minimal separator. 
We have shown in Section 2.2 that such changes are all associated with the addition 
and deletion of edges in the clique-graph: adding a clique-graph edge enables new 
edges (or change their minimal separator) while removing a clique-graph edge 
disables edges. To keep the explanation simple, and because we will see that this 
does not change the overall complexity, we consider a priority queue based on a heap 
data structure, with retrieval and removal of the minimum in 𝑂(1) , and 
insertion/deletion of an element in 𝑂(log 𝑛). We now prove that, even in the worst 
case, our solution exhibits a far better complexity than state-of-the-art methods. 
 
Initialization. At the start, all pairs of edges are sorted and added to the queue, 
which requires 𝑂(𝑀2 log(𝑀)) operations. 
Edge addition. Any new clique-graph edge has 𝐶𝑎𝑏 as its endpoint (see proof to 
Theorem 3). In consequence, any edge impacted by the addition of (a,b) has either 
the form (x,a) or (x,b). As a (and b) cannot be connected to more than M-1 vertices, 
at every step of the search, at most 2(𝑀 − 1) edges might be added to the queue; 
resulting in a quasi-linear complexity with the number of variables for each of the 
𝑂(𝑀2) possible steps, thus 𝑂(𝑀3 log 𝑀).  
Edge deletion. Any edge that is removed from the priority queue has obviously to 
have been added to it. As there are at most 𝑂(𝑀2 log 𝑀 + 𝑀3 log 𝑀) such additions, 
there will also be at most 𝑂(𝑀3 log 𝑀) such deletions. 
Overall. For 𝑘 steps performed, our algorithm thus requires only 𝑂(𝑘𝑀 log 𝑀) 
operations; every step of LLA exhibits a quasi-linear complexity with the number of 
variables. This starkly contrasts with the quadratic 𝑂(𝑘𝑀2) complexity of 
state-of-the-art algorithms [32,34,12,13]. Our experiments will show that this 
difference makes it possible to gain efficiency by several orders of magnitude and 
allows us to perform the search for a statistically significant junction-tree model for 
datasets with thousands of variables. 
 

3. Experiment:   
We have shown in Section 2 that Prioritized Chordalyis dominates the state of the art 
in terms of algorithmic complexity. This section seeks to demonstrate its 
computational superiority on real-world datasets. Note that this section does not seek 
to further assess the relevance of 𝜒2 goodness-of-fit tests for learning graphical 
models, because it has long been accepted by the community. Rather, our 
experiments seek to demonstrate that we can achieve further scalability without 
sacrificing the statistical soundness of the scoring methods. To this end, we consider 
four successively refined algorithms for searching junction-tree models, starting from 
the current state of the art for high-dimensional data [12] and progressively 
incorporating the contributions of this paper:  
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Version 1: We start with Chordalysis: the first method that can perform the search  
on high-dimensional data [12].  
Version 2: We integrate the clique-graph update algorithm from [32] into Version 1.  
Version 3: We add to Version 2 the ability to keep track of the minimal 
(a,b)-separators.  
Version 4 -- Prioritized Chordalysis: We add to Version 3 the ability to keep track 
of the best edges to be successively added in a priority queue. 

As we have demonstrated in Section 2, the worst-case complexity only 
depends on the number of variables. This is a consequence of the number of edges 
depending on the number of vertices. However, the number of edges to be discovered 
from data depends on the actual dependencies that can be found in data. If the data is 
drawn from a probability distribution where all variables are actually independent, 
then the process will quickly finish. In contrast, real-world datasets often exhibit 
numerous high-order correlations, leading to more computation time. In addition, the 
quantity of data has also a significant impact on the computation time. This can seem 
counter-intuitive because the scoring of an edge depends on four entropies only, and 
each entropy can be naively computed with a quasi-linear complexity with the size of 
the dataset. However, increased data quantity allows more edges to be identified as 
statistically significant and will thus often lead to a very significant increase in the 
computation time. This is well exemplified by the toss of a coin and the associated 
decision: if we toss the coin 100 times and we observe 51 heads and 49 tails, we 
cannot state that the coin is unbalanced. However, it we toss it 100,000 times and 
51,000 heads and 49,000 tails, and while this is the same proportion of heads/tails, 
statistical tests tell us that we can confidently state that it is very unlikely that the 
coin is balanced. This phenomenon is similar to the one observed with the learning of 
decision trees: larger quantities of data will tend to create deeper trees. This is why 
we use a broad range of real-world datasets, with both various number of variables 
and various quantities of data: 
 Mushroom: the classical mushroom dataset, 22 variables, 8k examples [36]. 
 EPESE: epidemiological study of the elderly, 25 variables, 14k examples [37]. 
 Internet: demographic information on internet users, 70 variables, 10k examples 

[36]. 
 CoIL2000: insurance customer management, 86 variables, 6k examples [38]. 
 MITFace: face recognition dataset, discretized to 4 bins using equal frequency, 

362 variables, 31k examples [39]. 
 Finance: stock performance of the companies listed in the S&P500 over 20 years 

of trading, 500 variables. 
 Protein: Multiple alignment of the Serpin family of proteins, 750 variables, 212 

proteins [42]. 
 Orphamine: Frequency of occurrence of 1,260 symptoms for 2,600 rare diseases, 

1,260 variables, 2,600 examples [40]. 
 ABC: Use of the 500 most interesting words in all the news articles about 

Melbourne published by the Australian Broadcasting Network (ABC), 500 
variables, 35k examples.  

 NYT: Use of the 2,000 most interesting words in 10% of the articles published by 
the New York Times from 1987 to 2007, 2,000 variables, 180k examples [41]. 

Where licensing restrictions permit us to do so, we have made these datasets 
available at http://bit.ly/PrioChordalysisRes. 
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Figure 3 presents the computation time required to perform LLA for every version of 
the algorithm on these real-world datasets. Note that the graphs associated with each 
dataset are provided at http://bit.ly/PrioChordalysisRes. These results confirm the 
superiority of our method. Prioritized Chordalysis is the fastest method for all 
datasets. Moreover, for all datasets with more than 100 variables (from MIT Face), 
Prioritized Chordalysis performs the search with about 4 orders of magnitude faster 
than the state of the art. For example, for the ABC dataset – which comprises 500 
variables – Prioritized Chordalysis performs the search in 27 seconds while 
Chordalysis (Version 1) requires 39 hours (to obtain exactly the same result); this is 
more than a 5,200x speedup.  
  

 

Figure 3: Comparison of the computation time required to perform a forward search on various 
real-world datasets. "+" indicates that the computation did not finish within 10 days of computation. 

This is a major result that makes it possible to tackle datasets with thousands of 
variables. For such datasets, our experiments indeed show that Prioritized 
Chordalysis makes it possible to perform the search in seconds or minutes, when the 
state of the art requires days. For example, for the NYT dataset – which comprises 
2,000 variables – Prioritized Chordalysis performs the search in only 3 minutes while 
Version 1 could not provide any result in 10 days of computation.  

Furthermore, we can observe that all the successive elements that we have 
introduced in this paper play a major role in making the search scalable to very 
high-dimensional datasets. Each of the contributions that we have made in this paper 
- from providing a complete and correct clique-graph-update algorithm, to keeping 
track of the minimal separators in order to maintain the possible modifications in a 
priority queue - gains one to two orders of magnitude, depending on the 
dimensionality of the dataset, amount of available evidence, and complexity of the 
underlying joint distribution.  

Finally, we examine the scalability of Prioritized Chordalysis, on a dataset 
with increasing number of variables. The NYT dataset is a good test bed for this task 
because 1) it is our biggest dataset with 180,000 instances and 2,000 variables and 2) 
its variables are ordered (occurrence frequency of every word), which makes its 
study possible with an increasing number of variables; the most frequent words first. 
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Figure 4 presents the results of this experiment. We can observe that our 
proposed algorithm, Prioritized Chordalysis, greatly dominates all other methods. 
Moreover, we can see that the magnitude of the improvement of Prioritized 
Chordalysis actually increases over time, i.e. the plots get farther apart as the number 
of variables increases. 

Figure 4: Comparison of the computation time required to perform the search with regard to the 
number of variables used –dataset NYT. We limited the discovery to the first 100 edges to limit the 
computation time.  

 
Interestingly, we can also see that when the number of variables increases, Version 2 
tends to perform as fast as Version 3. This is because the time required to find the 
minimal separator of every edge from the clique graph (Version 2) becomes 
negligible relative to maintaining the structure of the clique graph. In consequence, 
tracking the minimal separators (Version 3) tend to provide only marginal 
improvement over Version 2. Note however that Version 4 (Prioritized Chordalysis) 
keeps track of the minimal separators to maintain the priority queue; this element is 
thus necessary to obtain the exhibited improvement. 
 

4. Results and Discussion:   
Being able to predict any variable from all the available information about a 

system – Omnidirectional learning - is critical for many applications. In this project, 
we showed how junction trees are an excellent class of models to perform this task, 
because they have exact and fast marginalization algorithms available. The 
remaining scientific lock was the scalability of learning such models.  
 With the contributions of this project, we have showed how such models can 
be learned for a large class of real-world data assets, and this on a standard desktop 
computer only.  
More specifically, we made the following contributions:  

1. We proved that only a very small subset of edges has to be considered at each 
step of the search. 

2. We demonstrated how to efficiently find this subset of edges. 
3. We showed how to efficiently keep track of the best edges to be subsequently 

added to the initial model.  
Our experiments, carried out on real datasets with up to 2,000 variables, showed that 
our contributions make it possible to gain about 4 orders of magnitude in 
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computation time, making it possible to learn effective junction-tree models of joint 
distributions in seconds instead of days. Because efficient marginalization exists for 
these models, our contributions make omnidirectional learning feasible on any 
standard desktop computer for virtually all datasets with up to thousands of variables.  

 
The research was published and presented at the SIAM International Conference on 
Data Mining and received Best Paper Honorable mention.   
 
To ensure broad use and uptake of the outcomes of this research project, we have 
released Prioritized Chordalysis open-source on Github at 
http://github.com/fpetitjean/chordalysis. This will allow industry and many fields of 
science to unlock additional value from their new and existing data assets.  
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